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1. Introduction

It is known that chiral symmetry plays an essential role in low-energy Quantum Chromo-

dynamics (QCD), which is believed to be the underlying fundamental theory for strong

interactions. Another predominant feature for low-energy QCD is its non-perturbative

nature. Lattice QCD provides a genuine non-perturbative theoretical framework for the

study of low-energy QCD from first principles. Chirality is associated with masslessness

of fermions. Incorporating massless fermions have always been a great challenge in lattice

studies due to both theoretical and numerical difficulties. In recent years, considerable

progress has been made in understanding chiral symmetry on the lattice. Domain wall

fermions [1, 2] and the overlap fermions [3 – 7] have emerged as two new candidates in the

formulation of lattice fermions which have much better chiral properties than the conven-

tional Wilson or staggered fermions. Since chiral symmetry is so crucial to the theory of

QCD, it is therefore desirable to use these new fermions if possible.

On the other hand, anisotropic lattices have been used extensively on heavy hadronic

states and they proved to be extremely helpful in various applications. These include: glue-

ball spectrum calculations [8 – 10], charmonium spectrum calculations [11, 12], charmed

meson and charmed baryon calculations [13, 14] and hadron-hadron scattering calcula-

tions [15 – 18]. Note that many of the above mentioned studies involve light quarks for

which chiral symmetry is essential. It is therefore desirable to use either domain wall or
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overlap fermions which have better chiral properties. Indeed, much of the systematic un-

certainties in these studies originates from chiral extrapolations. It is therefore tempting

to study the new lattice fermions (domain wall fermions or overlap fermions) on four-

dimensional anisotropic lattices. In a previous study, we have formulated domain wall

fermion on anisotropic lattices using bare perturbation theory to one-loop order [19]. In

this paper, we will perform a similar study for the overlap fermions. These studies provide

us with some guiding information on the tuning of the parameters in the corresponding

fermion action which is necessary in realistic Monte Carlo simulations.

In this paper, we study massive overlap fermions on anisotropic four-dimensional lat-

tices. For the gauge action, we adopt the tadpole improved gauge actions [20, 8] which

have been used in various lattice calculations. The fermion action on anisotropic lattices

generally contains more parameters than its isotropic counterparts. These parameters have

to be tuned properly in order to yield a correct continuum limit. We will first address this

issue in the case of free overlap fermions on anisotropic lattices. It is found that, in order to

restore the normal relativistic dispersion relation for the quark, parameters of the fermion

action have to be tuned accordingly. Then, we compute the quark propagator in lattice

perturbation theory to one-loop. Quark field and quark mass renormalization constants

are obtained for various values of the bare parameters. This perturbative calculation serves

as a guidance for further non-perturbative Monte Carlo simulations. Similar perturbative

calculations have been performed in the case of isotropic lattice [21 – 24]. Our calculation

is an extension of these to the case of anisotropic lattice. For a good review on the pertur-

bative calculations of the overlap Dirac fermions, please consult ref. [25]. The use of both

anisotropic lattices and overlap fermions to treat relativistic heavy quarks on the lattice

was first advocated in ref. [26] where the authors have considered the dispersion relation

of quarks in a quenched numerical study.

This paper is organized as follows. In section 2, overlap fermion action on anisotropic

lattices is given. In section 3, the free overlap fermion propagator on anisotropic lattices is

presented and the dispersion relation of the free overlap fermion is studied. It is found that

hopping parameters of the fermion action have to be tuned properly, according to the value

of the bare quark mass, so as to have the correct continuum limit for the massive quark.

In section 4, the calculations of fermion self-energy to one-loop is presented. Numerical

results for the renormalization factors for the quark field and the current quark mass are

listed. In section 5, we will conclude with some remarks and outlook. The one-gluon and

two-gluon vertex functions are listed in the appendix.

2. The overlap fermions on anisotropic lattices

The fermion action for the exact massless overlap quark has the following form [5 – 7]:

SF =
∑

x,y

ψ̄(x)Dxy ψ(y), (2.1)

with the (massless) overlap Dirac operator given by:

D(m = 0) =

(
1 + X

1√
X†X

)
. (2.2)
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The operator X appearing in the above equation is the Wilson-Dirac operator on

anisotropic lattices which we write as:

Xxy =
1

2

4∑

µ=1

κµ

[
γµ

{
δx+µ̂,yUµ(x) − δx,y+µ̂U †

µ(y)
}

+rµ

{
2δx,y − δx+µ,yUµ(x) − δx,y+µU †

µ(y)
}]

+ M0δx,y, (2.3)

where rµ represents Wilson parameters introduced to remove the doublers from low-energy

spectrum. In the case of anisotropic lattice, we will also use the convention: r0 = rt,

ri = rs. The parameter M0 is usually taken to be negative so as to restore chiral properties

of the quark. Since one can scale the operator X by a constant factor without changing

fermion matrix D, one might just fix the parameter κs to some constant, say +1. We will

also set the temporal Wilson parameter rt = 1. It is well-known that the massless overlap

Dirac operator D(m = 0) satisfies the Ginsparg-Wilson relation [27] which can be viewed

as a generalization of the continuum chiral symmetry to the lattice [28, 29]. The Dirac

operator also has a massless mode which has definite chirality.

For the massive quarks, one has to modify the massless overlap Dirac operator given

in (2.2) to [5]:

D(m) =

(
1 +

m

2
+

(
1 − m

2

)
X

1√
X†X

)
. (2.4)

It is known that the chiral mode then acquires a mass that is proportional to the parameter

m for small values of m. With these conventions, the lattice action describing a massive

domain wall fermion depends on 4 bare parameters: the Wilson mass parameter M0, the

temporal hopping parameter κt, the spatial Wilson parameter rs and the bare quark mass

parameter m.

In perturbation theory, it is convenient to study these matrices in Fourier space. After

Fourier transformation of the matrix X:

Xxy =

∫ π

−π

d4p

(2π)4
d4q

(2π)4
ei(qx−py)X̃(q, p) , (2.5)

the quantity X̃(q, p) is expanded into power series in the bare coupling g0:

X̃(q, p) = X̃0(p)(2π)4δP (q − p) + X̃1(q, p) + X̃2(q, p) + O(g3
0), (2.6)

where the functions X̃i are of the order of (g0)
i respectively. Higher order contributions

are not needed in an one-loop calculation. The explicit expressions are found to be:

X̃0(p) = ip̃/ +
∑

µ

κµrµ(1 − cos pµ) + M0,

X̃1(q, p) =
∑

A,µ

∫
d4k

(2π)2
(2π)4δP (q − p − k) × g0A

A
µ (k)TAV1µ

(
p +

k

2

)
,

X̃2(q, p) =
∑

A,B,µ,ν

∫ π

−π

d4k1

(2π)4
d4k2

(2π)4
(2π)4δP (q − p −

∑
ki)

×g2

2
AA

µ (k1)A
B
µ (k2)T

ATBV2µ

(
p +

∑
ki

2

)
, (2.7)
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where p̃/ =
∑

µ κµγµ sin pµ and the functions V1µ and V2µ are given by:

V1µ

(
p +

k

2

)
= κµ

(
iγµ cos

(
p +

k

2

)

µ

+ rµ sin

(
p +

k

2

)

µ

)
,

V2µ

(
p +

∑
ki

2

)
= κµ

(
−iγµ sin

(
p +

∑
ki

2

)

µ

+ rµ cos

(
p +

∑
ki

2

)

µ

)
. (2.8)

3. Dispersion relation for the free overlap fermions

In this section, we briefly summarize the results for the free overlap fermions on anisotropic

lattices. These results can be obtained from their counterparts for the isotropic lattices

which can be found from the literature, see for example ref. [5]. In the free case, we denote

the overlap Dirac operator given in eq. (2.4) by D0. The inverse of D0 in momentum space

is found to be:

D−1
0 (p) =

1

2

(
1 − m

2

)
X†

0(p) +
(
1 + m

2

)
ω(p)(

1 + m2

4

)
ω(p) +

(
1 − m2

4

)
b(p)

, (3.0a)

b(p) =
∑

µ

κµrµ(1 − cos pµ) + M0, (3.0b)

ω(p) =

√√√√p̃2 +

(∑

µ

κµrµ(1 − cos pµ) + M0

)2

> 0 , (3.0c)

where p̃2 =
∑

µ κ2
µ sin2 pµ.

The dispersion relation for the physical particle (in this case, a free quark) is obtained

by inspecting the time dependence of the propagator in coordinate space:

G0(p, t) =

∫ π

−π

dp0

2π
D−1

0 (p0,p)eip0t . (3.1)

For large temporal separation t, the above propagator will behave like e−tEp with Ep being

the energy of the particle with three-momentum p. Using the variable z = eip0 , the above

propagator can also be expressed as:

G0(p, t) =

∮
dz

2πi
zt−1D−1(z,p) . (3.2)

where the contour integral is along the unit circle counter-clockwise. If D−1(z,p) were an

entire function of z, the above propagator receives contributions from the poles of D−1(z)

within the unit circle. The case for the overlap is a bit more complicated due to the branch

cut of ω(p). However, it can be shown that the leading contribution to the propagator

G0(t,p) at large t comes from the residue of the pole closest to z = 1 in the complex z

plane. Thus, setting the four-momentum:

pµ = (Ep,p) , (3.3)
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and demanding that it is the pole of the propagator D−1
0 (p), the above equations yield the

relation:

−
(

1 +
m2

4

)2

p̃2 = m2b2 . (3.4)

We are only interested in the dispersion relation when the lattice three-momentum |p| ¿ 1.

We thus obtain:

Ep = E0 +
p2

2Mkin
+ O(p4) , (3.5)

where E0 ≡ mQ will be identified as the pole mass of the quark and Mkin is the so-called

kinetic mass of the quark. After some calculations, the equation satisfied by E0 = mQ is

found to be:

A cosh2 E0 + B cosh E0 + C = 0 , (3.6)

where the coefficients are given by:

A = κ2
t

(
1 +

m2

4

)2

− κ2
t m

2 ,

B = 2κtm
2 (κt + M0) ,

C = −κ2
t

(
1 +

m2

4

)2

− m2 (κt + M0)
2 .

(3.7)

It is seen that E0 ≡ mQ is independent of the parameter rs. It is also easy to verify that

for small values of m, the solution E0 = mQ obtained from eq. (3.6) is proportional to m,

as expected. We can also find out the kinetic mass term with the result:

1

2Mkin
=

dEp

dp2

∣∣∣∣∣
p=0

=

(
1 + m2

4

)2
+ m2rs (M0 + κt − κt cosh E0)

(2A cosh E0 + B) sinhE0
(3.8)

In order to have the usual energy-momentum dispersion relation for the quark, one imposes

the condition: Mkin = E0 ≡ mQ. The anisotropy parameter is defined via: χ ≡ as/at.

Therefore, restoring the lattice spacings in the above equations, we find that the condition

Mkin = E0 imposes a relationship between χ and κt:

χ2 =
(A cosh E0 + B/2) (sinh E0/E0)(

1 + m2

4

)2
+ m2rs (M0 + κt − κt cosh E0)

, (3.9)

where the value of E0 = mQ is to be obtained from eq. (3.6). To summarize, for a given

set of parameters χ, M0, m and rs, one has to solve both eq. (3.6) and eq. (3.9) to obtain

the values of κt and mQ.

In figure 1, we have shown the pole mass of the quark as a function of the propagator

mass parameter: mP = m|M0| for a given set of other parameters. Three curves in the

plot correspond to χ = 1, 3, 5 respectively. The value of κt is obtained from eq. (3.9). It

is seen that the pole mass of the quark increases with mP linearly for small values of mP .

For larger values of bare quark mass, some non-linearity sets in.
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Figure 1: The pole mass of the free domain wall quark, mQ, measured in 1/as unit as a function

of the propagator bare mass parameter mP = m|M0| for three values of the anisotropy parameter

χ. Three curves correspond to χ = 1, 3 and 5, respectively. We have set M0 = −0.5 and rs = 1 in

this plot.

In figure 2, for a given value of anisotropy χ, we have plotted the appropriate value

of κt as a function of the propagator mass parameter mP . Since mP is very close to the

pole mass mQ as figure 1 indicates, this figure can also be viewed as the dependence of

κt on mQ for a given anisotropy χ. It is seen that, in the massless limit, i.e. mQ → 0,

one recovers the naive relation: χ = κt. However for massive quarks, this relation is

distorted with increasing values of the quark mass. The deviation from its massless limit

can be as large as 15% for values of mP ' 0.5. In quenched Monte Carlo simulations,

the anisotropy χ is fixed by the pure gauge sector. Therefore, this figure can be utilized

to tune the hopping parameter κt accordingly for a given value of the quark mass and

the anisotropy. In a non-perturbative Monte Carlo simulation, this tuning process can

be performed by demanding physical particles, e.g. the pions, have the correct dispersion

relation for small three-momenta. We would like to emphasize that this tuning process is

crucial in the simulation of massive quarks since, without it, the hadrons will not have the

correct continuum limit.

In both figure 1 and figure 2 we have chosen the Wilson parameters rs to be unity. In

principle, other values are also permitted as long as the doublers are well separated from

the physical modes. It is seen from eq. (3.0b) that the separation between the doublers

and the normal physical quark is characterized by the Wilson parameter rs. Therefore, to

– 6 –
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Figure 2: With the same set of parameters as figure. 1, the value of κt/χ is shown as a function

of the propagator mass parameter mP for χ = 1, 3 and 5. It is seen that in the massless limit, the

expected relation: χ = κt is recovered for all χ.

decouple the doublers it is better not to take too small values for rs. In the remaining part

of this paper, we will take the conventional choice: rt = rs = 1.

4. The wave function and quark mass renormalization to one-loop

In this section, we will compute the quark self-energy to one-loop using bare perturbation

theory. Two diagrams contribute at this level: the tadpole diagram and the half-circle

diagram. We will first list the necessary Feynman rules and the calculation of these two

diagrams will be dealt with afterwards.

4.1 Feynman rules

First of all, one needs the free propagator of the lattice gauge fields [30]. After performing

Fourier transformation of the gauge fields, the quadratic part of the gauge action has the

standard form in momentum space:

S(0)
g [Aµ] =

1

2

∑

µν

∫ π

−π

d4l

(2π)4
(
Āµ(l)Mµν(l) Āν(−l)

)
, (4.1)
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where

M00 = χ

[
χ2

αg
l̂20 +

∑

j

l̂2j q0j

]
(4.2)

Mjj =
1

χ

[
1

αg
l̂2j + χ2 l̂20 q0j +

∑

j′ 6=j

l̂2j′ qj′j

]
(4.3)

Mi6=j =
1

χ

[
1

αg
l̂iĵj − l̂i l̂j qij

]
(4.4)

M0j = Mj0 = χ

[
1

αg
l̂0l̂j − l̂0 l̂j q0j

]
(4.5)

with lattice momentum defined as: l̂µ ≡ 2 sin(
lµ
2 ). The quantities qµν appearing in the

above equations are given by:

q0j = 1 +
1

12
l̂2j , qij = 1 +

1

12
(l̂2i + l̂2j ) i 6= j . (4.6)

Using these notations, the free gluon propagator is expressed as:

Dµν(l) = M−1
µν =

1

(l̂2)2

[
αg l̂µ l̂νχ +

fµν(l̂ρ, qρσ, χ)

fD(l̂ρ, qρσ, χ)

]
, (4.7)

The explicit expressions for fµν and fD maybe found in the literature [30]. For simplicity,

in the following calculation we choose the gauge in which αg = 1.

The vertex functions for the interaction between the quark and the gluon fields can

also be obtained with the help of eq. (2.7) and eq. (2.8). The explicit expressions are given

in eq. (A.1) and eq. (A.2) in the appendix.

4.2 The half-circle diagram

For the half-circle diagram, the contribution to the quark self-energy can be written as:

Σhalf−circle(p) = g2
0CF

∫
d4k

(2π)4

∑

µ

(
1 − m

2

)2

{ω(k) + ω(p)}2

×





1

2

σ
(1)
µ (p, k)(

1 + m2

4

)
ω(k) +

(
1 − m2

4

)
b(k)



 Dµµ(p − k) , (4.8)

where

σ(1)
µ (p, k) =

{
V1µ

(
p + k

2

)
− X0(p)

ω(p)
V †

1µ

(
p + k

2

)
X0(k)

ω(k)

}

×
{(

1 − m

2

)
X†

0(k) +
(
1 +

m

2

)
ω(k)

}

×
{

V1µ

(
p + k

2

)
− X0(k)

ω(k)
V †

1µ

(
p + k

2

)
X0(p)

ω(p)

}
, (4.9)

and Dµµ is the gluon propagator given in eq. (4.7).
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We will be interested in the small p behavior of the self-energy. Therefore, one can

expand the integrand in eq. (4.8) around p = 0. Note that ω(p) is an even function of p.

Therefore, when expanded around p = 0, one has: ω(p) = ω(0) + O(p2). However, both

Dµµ(p−k) and σ
(1)
µ (p, k) contains terms that are linear in p. When expanding the function

Dµµ(p− k), the leading term is an even function of k, the term proportional to p is an odd

function of k. Therefore, when multiplied with expansion of the function σ
(1)
µ (p, k), only

the terms that are even functions of k will give non-zero contributions after the integration

over k is performed. For example, if we take Dµµ(k), then it suffice to keep only even

functions of k in the expansion of σ
(1)
µ (p, k):

σ(1)
µ (0, k) =

{
V1µ

(
k

2

)
+ V †

1µ

(
k

2

)
X0(k)

ω(k)

}

×
{(

1 − m

2

)
X†

0(k) +
(
1 +

m

2

)
ω(k)

}

×
{

V1µ

(
k

2

)
+

X0(k)

ω(k)
V †

1µ

(
k

2

)}
,

∼
{(

1 − m

2

)
ω +

(
1 +

m

2

)
b
}

×
(

V †
1µV1µ + V1µV †

1µ +
2

ω
V †

1µX0V
†
1µ

)
. (4.10)

Here the symbol “∼” means that the odd functions of k are dropped from the expression.

Similarly, if the terms linear in p from Dµµ(p − k) are taken, which is an odd function of

k, then only terms that are odd functions of k in the expansion of σ
(1)
µ (p, k) will contribute

to the integral.

Then, we calculate the quantity dσ
(1)
ν (p, k)/dpµ. First, we notice that

dV1ν

(
p+k
2

)

dpµ

∣∣∣∣∣∣
p=0

= − i

2
γµV1µ

(
k

2

)
δµν ,

dX0(p)

dpµ

∣∣∣∣
p=0

= iκµγµ . (4.11)

We define: dσ
(1)
ν (p, k)/dpµ ≡ iκµγµσ

(1)ν
µ and the explicit calculation shows:

dσ
(1)
ν (p, k)

dpµ

∣∣∣∣∣
p=0

=

{
− i

2
γµV1µ

(
k

2

)
δµν +iγµ

κµ

M0
V †

1ν

(
k

2

)
X0(k)

ω(k)
+

i

2
γµV †

1µ

(
k

2

)
X0(k)

ω(k)
δµν

}

×
{(

1 − m

2

)
X†

0(k) +
(
1 +

m

2

)
ω(k)

}

×
{

V1ν

(
k

2

)
+

X0(k)

ω(k)
V †

1ν

(
k

2

)}

+

{
V1ν

(
k

2

)
+ V †

1ν

(
k

2

)
X0(k)

ω(k)

}

×
{(

1 − m

2

)
X†

0(k) +
(
1 +

m

2

)
ω(k)

}
(4.12)

×
{
−i

2
γµV1µ

(
k

2

)
δµν +

X0(k)

ω(k)
V †

1ν

(
k

2

)
iγµ

κµ

M0
+

X0(k)

ω(k)
V †

1µ

(
k

2

)
i

2
γµδµν

}
.
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As we clarified before, we only need to keep odd functions of k in this quantity. Thus we

get:

dσ
(1)
ν (p, k)

dpµ

∣∣∣∣∣
p=0

∼
(
1−m

2

){
− i

2
{γµ, V1µX†

0V1µ}δµν +
i

2
{γµ, V †

1µX0V
†
1µ}δµν

+iγµ
κµ

M0
ω

(
V †

1νV1ν + V1νV
†
1ν

)
+ i

κµ

M0
{γµ, V †

1νX0V
†
1ν}

}

+
(
1+

m

2

){
−iγµω

(
V1µV1µ + V †

1µV †
1µ

)
δµν

+i
b

ω
{γµ, V †

1µX0V
†
1µ}δµν + iγµ

κµ

M0
b
(
V †

1νV1ν + V1νV
†
1ν

)

−iγµ
κµ

M0
2ωV †

1νV †
1ν + i

κµ

M0

2b

ω
{γµ, V †

1νX0V
†
1ν}

}
. (4.13)

Here the symbol “∼” means that the even functions of k are dropped from the expression.

Using the expressions for various quantities, we have:

V †
1νV1ν = V1νV †

1ν = κ2
ν

V1νV1ν ∼ −κ2
ν cos kν V †

1νV
†
1ν ∼ −κ2

ν cos kν

V †
1νX0V

†
1ν ∼ κ2

ν

(
κν sin2 kν − b cos kν

)

V1νX†
0V1ν ∼ κ2

ν

(
κν sin2 kν − b cos kν

)
(4.14)

Finally, we calculate the term dDνν(p − k)/dpµ|p=0:

dDνν(p − k)

dpµ

∣∣∣∣
p=0

= k̂µ

{
4
(
χ2

)δµ0

(
χ2k̂0

2
+

∑
j k̂2

j

)3

[
χk̂ν

2
+

f νν

fD

]

+
1

(
χ2k̂0

2
+

∑
j k̂2

j

)2

[
−2χδµν −

f ν
µ

fD
+

fD
µ f νν

f2
D

]}
(4.15)

where we have used the following notations:

f ν
µ(k) = − ∂f νν(p − k)

k̂µ∂pµ

∣∣∣∣∣
p=0

, fD
µ (k) = − ∂fD(p − k)

k̂µ∂pµ

∣∣∣∣∣
p=0

. (4.16)

As mentioned above, here the even functions of k in σ
(1)
ν (0, k) will vanish and the odd ones

will survive. These terms are of the following form:

k̂µσ(1)
ν (0, k) ∼ iκµγµk̂µ sin kµ

{
2
(
1 +

m

2

)
κµωδµν

+2
(
1 +

m

2

) (
κ2

ν sin2 kν

2
+ κ2

ν cos2 kν

2
(2δµν − 1)

)

+
2b

ω

(
1 +

m

2

) (
−bκµδµν + κ2

ν − 2κ2
µ cos2

kµ

2
δµν

)}
(4.17)
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Collecting all the relevant terms, we may write the contribution from the half-circle diagram

as:

Σhalf−circle(p) = g2

(
i
∑

µ

γµp̃µI(1)
µ + M (1)

)
. (4.18)

Introducing the following notations:

dσ
(1)
ν (p, k)

dpµ

∣∣∣∣∣
p=0

= iκµγµσ(1)ν
µ (k) k̂µσ(1)

ν (0, k) = iκµγµσ̃(1)ν
µ (k) , (4.19)

the quantity I(1) and M (1) are expressed in terms of the following integrals:

I(1)
µ = CF

∫
d4k

(2π)4

∑

ν

(
1 − m

2

)2

{ω − M0}2

{
1

2

1(
1 + m2

4

)
ω +

(
1 − m2

4

)
b

}

×
(

σ(1)ν
µ (k)Sνν

g (k) + σ̃(1)ν
µ (k)

dDνν(p − k)

k̂µdpµ

|p=0

)
, (4.20)

M (1) = CF

∫
d4k

(2π)4

∑

µ

(
1 − m

2

)2

{ω − M0}2 ×
{

1

2

σ
(1)
µ (0, k)(

1 + m2

4

)
ω +

(
1 − m2

4

)
b

}
Dµµ(k) . (4.21)

where all integrations are taken in the first Brillouin zone.

4.3 The tadpole diagram

Using the Feynman rules given in the previous section, the contribution from the tadpole

diagram can be written as:

Σtadpole(p) =
1

2
g2CF

∫ π

−π

d4k

(2π)4

∑

µ

(
1 − m

2

)
σ(2)

µ (p, k)Dµµ(k) , (4.22)

where the function σ
(2)
µ (p, k) reads:

σ(2)
µ (p, k) = − 1

2ω(p)

{
V2µ(p) − X0(p)

ω(p)
V †

2µ(p)
X0(p)

ω(p)

}
+

1

ω(p) {ω(p) + ω(p + k)}2

×
{

X0(p)V †
1µ

(
p +

k

2

)
V1µ

(
p +

k

2

)
+ V1µ

(
p +

k

2

)
X†

0(p + k)V1µ

(
p +

k

2

)

+V1µ

(
p +

k

2

)
V †

1µ

(
p +

k

2

)
X0(p)

− 2ω(p) + ω(p + k)

ω(p)2ω(p + k)
X0(p)V †

1µ

(
p +

k

2

)
X0(p + k)V †

1µ

(
p +

k

2

)
X0(p)

}
.

(4.23)

For small lattice momenta p, the function σ
(2)
µ (p, k) is expanded. It contains a term at

vanishing momentum:

σ(2)
µ (0, k) = − 1

{ω − M0}2

(
V †

1µV1µ + V1µV †
1µ +

2

ω
V †

1µX0V
†
1µ

)
, (4.24)
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and a term that is linear in p. To evaluate this term, we need dσ
(2)
ν (p, k)/dpµ ≡ iκµγµσ

(2)ν
µ :

dσ
(2)
ν (p, k)

dpµ

∣∣∣∣∣
p=0

= − iκµγµ

M0

(
δµν +

κν

M0

)
− iκµγµ

4κ2
µ cos kµ + 4κµb

{ω − M0}2M0ω2
sin2 kµ

×
{
−bκµδµν + κ2

ν − 2κ2
µ cos2 kµ

2
δµν

}

− 1

M0{ω(k) − M0}2

[
iκµγµ

(
V †

1νV1ν + V1νV
†
1ν

)

−i{γµ, V1µX†
0V1µ}δµν + V1ν

dX†
0(p + k)

dpµ

∣∣∣∣∣
p=0

V1ν

−iκµγµ

2κ2
µ cos kµ + 2κµb

ω3
sin2 kµ

×M0

{
−bκµδµν + κ2

ν − 2κ2
µ cos2

kµ

2
δµν

}

−
(

1

M0
− 2

ω

)(
iκµ{γµ, V †

1νX0V
†
1ν} + iM0{γµ, V †

1µX0V
†
1µ}δµν

+M0V
†
1ν

dX0(p + k)

dpµ
|p=0V

†
1ν

)]
. (4.25)

Note that we have:

V1ν
dX†

0(p + k)

dpµ

∣∣∣∣∣
p=0

V1ν ∼ −iκµγµ cos kµκ2
ν + iκ3

µγµ(1 + cos kµ)δµν ,

V †
1ν

dX0(p + k)

dpµ

∣∣∣∣
p=0

V †
1ν = −V1ν

dX†
0(p + k)

dpµ
|p=0V1ν . (4.26)

Therefore, if we introduce the following denotation

dσ
(2)
ν (p, k)

dpµ

∣∣∣∣∣
p=0

= iκµγµσ(2)ν
µ (k) , (4.27)

we can parameterize the contribution from the tadpole diagram as:

Σtadpole(p) = g2

(
i
∑

µ

γµp̃µI(2)
µ + M (2)

)
, (4.28)

where the quantities I(2) and M (2) are given by:

I(2)
µ =

1

2
CF

∫ π

−π

d4k

(2π)4

∑

ν

(
1 − m

2

)
σ(2)ν

µ (k)Dνν(k) , (4.29)

M (2) =
1

2
CF

∫ π

−π

d4k

(2π)4

∑

µ

(
1 − m

2

)
σ(2)

µ (0, k)Dµµ(k) . (4.30)
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Adding the contributions from the half circle and the tadpole diagrams together, one

can verify that M (1) + M (2) is proportional to the quark mass:

M (1) + M (2) = −CF

∫ π

−π

d4k

(2π)4

∑

µ

m
(
1 − m

2

)

{ω − M0}2

×
{

1

2

ω(V †
1µV1µ + V1µV †

1µ + 2
ω
V †

1µX0V
†
1µ)

(
1 + m2

4

)
ω +

(
1 − m2

4

)
b

}
Dµµ(k) . (4.31)

This is the expected result since it is known that quark mass is only multiplicative renor-

malized in QCD due to chiral symmetry. In what follows, we will define:

M (3) =
M (1) + M (2)

mP
, (4.32)

which is a finite quantity in the chiral limit.

4.4 The massless case

If the quark mass is exactly zero, then the one-loop contribution discussed above contains

infra-red divergences. However, the same infra-red divergence also exists in the continuum.

Therefore, one can subtract an appropriate infra-red divergent part from the one-loop

contribution:

I
(1)
finite,µ = I(1)

µ (m = 0) − CF

M0

∫ π

−π

d4k

(2π)4
4χ(χ2)δµ0k2

µθ(π2 − (χ2k2
0 +

∑
j k2

j ))

(χ2k2
0 +

∑
j k2

j )
3

(4.33)

I
(1)
log,µ =

CF

16π2M0

(
ln(π2) + 1 − ln(p̃2)

)
(4.34)

M
(3)
finite = M (3)(m = 0) − CF

M0

∫ π

−π

d4k

(2π)4
4χθ(π2 − (χ2k2

0 +
∑

j k2
j ))

(χ2k2
0 +

∑
j k2

j )
2

(4.35)

M
(3)
log =

CF

4π2M0

(
ln(π2) + 1 − ln(p̃2)

)
(4.36)

The subtracted contributions listed above are all infra-red finite. Therefore they can be

evaluated numerically once the bare parameters are fixed. The infra-red divergent part can

be obtained analytically and depends on the external momentum (or a scale parameter

when external momentum is vanishing) as usual.

4.5 Numerical results

As we pointed out above, if the quark mass is non-zero, quantities I
(1)
µ (m), I

(2)
µ (m) and

M (3)(m) can be calculated directly using numerical integration once the bare parameters

are given. In figure 3 and figure 4, we have shown the values of I
(1)
µ and I

(2)
µ as functions

of the propagator mass parameter mP . Here the subscript “t” corresponds to µ = 0 and

the subscript “s” corresponds to µ = 1, 2, 3. In figure 5, we have shown the values of M (3)

as a function of the propagator mass parameter mP .
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Figure 3: The values of I
(1)
µ (m) as a function of mP are shown for χ = 1, 3 and 5. Here I

(1)
t

corresponds to µ = 0 and I
(1)
s corresponds to µ = 1, 2, 3. Other bare parameters are: κs = 1,

M0 = −0.5.

In the massless case, the subtracted part of the loop integrals can be computed nu-

merically following eq. (4.33) and eq. (4.35). Since the main purpose of this paper is to

address massive overlap quarks, we will not list the numerical results for the massless case.

Finally, our calculation can be easily translated into its tadpole-improved version fol-

lowing standard steps. For example, if we use the mean-field estimate (tree-level tadpole

improved theory), eq. (3.0b) is modified to:

b̃(p) =
∑

µ

κµ(1 − uµ cos pµ) + M0 , (4.37)

where uµ represents the mean-field value for the gauge field Uµ. Note that for small lattice

momenta, this amounts to a shift in parameter M0:

M̃0 = M0 +
∑

µ

κµ(1 − uµ) . (4.38)

Similarly, the tuning of the hopping parameter κt can also be discussed within the mean-

field approximation. Note that these might be a rather good estimate for the correct value

for the parameters in future Monte Carlo simulations.
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Figure 4: The values of I
(2)
µ (m) as a function of mP are shown for χ = 1, 3 and 5. Here I

(1)
t

corresponds to µ = 0 and I
(1)
s corresponds to µ = 1, 2, 3. Other bare parameters are: κs = 1,

M0 = −0.5.

5. Discussions and conclusions

In this paper, we have studied massive overlap fermions on anisotropic lattices. We argue

that this setup can be useful in many lattice QCD studies. It is shown that, in order

to restore the usual dispersion relation for the quark at small three-momenta, hopping

parameter κt has to be tuned according to the quark mass values. Quark propagator is

calculated using bare perturbation theory to one-loop order. We find the wave-function

and mass renormalization constants at various values of the bare parameters. These results

serve as a guidance for the tuning of the parameters in real Monte Carlo simulations.

A. Vertex functions

Here we list the vertex functions used in the main text. The isotropic lattice counter-

parts for the vertex functions can be found in the literature [21 – 24] and the version for

anisotropic lattice can be obtained accordingly after obvious modifications. The interaction

vertex for the quark field, anti-quark field and one gluon field reads:

−g0
1 − m

2

ω(q) + ω(p)
TA

ab

{
V1µ

(
p +

k

2

)
− X0(q)

ω(q)
V †

1µ

(
p +

k

2

)
X0(p)

ω(p)

}
. (A.1)
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Figure 5: The values of M (3)(m) as a function of mP are shown for χ = 1, 3 and 5. Other bare

parameters are: κs = 1, M0 = −0.5.

The two-gluon interaction vertex is much more complicated. It is found to be:

−g2
0

(
1 − m

2

) 1

2

{
TA, TB

}
ab

×
[

1

ω(q) + ω(p)

{
V2µ

(
p +

k

2

)
δµν − X0(q)

ω(q)
V †

2µ

(
p +

k

2

)
X0(p)

ω(p)
δµν

}

− 1

{ω(q) + ω(p)}{ω(p) + ω(p + k1)}{ω(p + k1) + ω(q)}

×
{

X0(q)V
†
1µ

(
p + k2 +

k1

2

)
V1ν

(
p +

k2

2

)

+V1µ

(
p + k2 +

k1

2

)
X†

0(p + k2)V1ν(p +
k2

2
)

+V1µ

(
p + k2 +

k1

2

)
V †

1ν

(
p +

k2

2

)
X0(p)

−ω(q) + ω(p) + ω(p + k2)

ω(q)ω(p)ω(p + k2)
×

X0(q)V
†
1µ

(
p + k2 +

k1

2

)
X0(p + k2)V

†
1ν

(
p +

k2

2

)
X0(p)

}
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− 1

{ω(q) + ω(p)}{ω(p) + ω(p + k1)}{ω(p + k1) + ω(q)}

×
{

X0(q)V
†
1ν

(
p + k1 +

k2

2

)
V1µ

(
p +

k1

2

)

+V1ν

(
p + k1 +

k2

2

)
X†

0(p + k1)V1µ

(
p +

k1

2

)

+V1ν

(
p + k1 +

k2

2

)
V †

1µ

(
p +

k1

2

)
X0(p)

−ω(q) + ω(p) + ω(p + k1)

ω(q)ω(p)ω(p + k1)
×

X0(q)V
†
1ν

(
p + k1 +

k2

2

)
X0(p + k1)V

†
1µ

(
p +

k1

2

)
X0(p)

}]
. (A.2)
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